Reproducible sequence generation in random neural ensembles.

نویسندگان

  • Ramón Huerta
  • Mikhail Rabinovich
چکیده

Little is known about the conditions that neural circuits have to satisfy to generate reproducible sequences. Evidently, the genetic code cannot control all the details of the complex circuits in the brain. In this Letter, we give the conditions on the connectivity degree that lead to reproducible and robust sequences in a neural population of randomly coupled excitatory and inhibitory neurons. In contrast to the traditional theoretical view we show that the sequences do not need to be learned. In the framework proposed here just the averaged characteristics of the random circuits have to be under genetic control. We found that rhythmic sequences can be generated if random networks are in the vicinity of an excitatory-inhibitory synaptic balance. Reproducible transient sequences, on the other hand, are found far from a synaptic balance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random Processes in Neural Network Ensembles

Random processes play an important role in the training of neural networks ensembles, where the goal is to create a set of minimally positive correlated or negatively correlated predictors with low bias. This paper examines the sources of nondeterminism in the learning process, such as stochastic gradient descent, random initialisation of weights, and sparse architectures of neural networks. Us...

متن کامل

Real-time interactive sequence generation and control with Recurrent Neural Network ensembles

Recurrent Neural Networks (RNN), particularly Long Short Term Memory (LSTM) RNNs, are a popular and very successful method for learning and generating sequences. However, current generative RNN techniques do not allow real-time interactive control of the sequence generation process, thus aren’t well suited for live creative expression. We propose a method of real-time continuous control and ‘st...

متن کامل

A generalized ABFT technique using a fault tolerant neural network

In this paper we first show that standard BP algorithm cannot yeild to a uniform information distribution over the neural network architecture. A measure of sensitivity is defined to evaluate fault tolerance of neural network and then we show that the sensitivity of a link is closely related to the amount of information passes through it. Based on this assumption, we prove that the distribu...

متن کامل

Building Ensembles of Neural Networks with Class-Switching

We investigate the properties of ensembles of neural networks, in which each network in the ensemble is constructed using a perturbed version of the training data. The perturbation consists in switching the class labels of a subset of training examples selected at random. Experiments on several UCI and synthetic datasets show that these class-switching ensembles can obtain improvements in class...

متن کامل

Neural Sequence Generation Using Spatiotemporal Patterns of Inhibition

Stereotyped sequences of neural activity are thought to underlie reproducible behaviors and cognitive processes ranging from memory recall to arm movement. One of the most prominent theoretical models of neural sequence generation is the synfire chain, in which pulses of synchronized spiking activity propagate robustly along a chain of cells connected by highly redundant feedforward excitation....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 93 23  شماره 

صفحات  -

تاریخ انتشار 2004